18 research outputs found

    Study on Simulation of Fiber Optic Current Sensor

    No full text
    Various applications of fiber optic current sensor are explored now. In this paper a new full-optical current sensor is designed. The fiber-optic current sensor is based on the Faraday rotation effect, and moreover, in this paper the mechanism of Faraday rotation effect of cylinder fiber model is explained. In the present research experimental platform has been set up. And then the Comsol software has been used to simulate the system’ transmission field, which could be achieved by calculating the transmittance of light propagating through POF. Finally the results obtained respectively by traditional structure and new structure are compared. The results may be helpful for the further research on the fiber optic current sensor

    Flurbiprofen Axetil Enhances Analgesic Effects of Sufentanil and Attenuates Postoperative Emergence Agitation and Systemic Proinflammation in Patients Undergoing Tangential Excision Surgery

    Get PDF
    Objective. Our present study tested whether flurbiprofen axetil could reduce perioperative sufentanil consumption and provide postoperative analgesia with decrease in emergency agitation and systemic proinflammatory cytokines release. Methods. Ninety patients undergoing tangential excision surgery were randomly assigned to three groups: (1) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 μg/kg sufentanil and 10 mL placebo by patient-controlled analgesia (PCA) pump, (2) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 μg/kg sufentanil and 100 mg flurbiprofen axetil by PCA pump, and (3) 10 mL placebo and a postoperative dose of 2 μg/kg sufentanil and 10 mL placebo by PCA pump. Results. Preoperative administration of flurbiprofen axetil decreased postoperative tramadol consumption and the visual analog scale at 4, 6, 12, and 24 h after surgery, which were further decreased by postoperative administration of flurbiprofen axetil. Furthermore, flurbiprofen axetil attenuated emergency agitation score and Ramsay score at 0, 5, and 10 min after extubation and reduced the TNF-α and interleukin- (IL-) 6 levels at 24 and 48 h after the operation. Conclusion. Flurbiprofen axetil enhances analgesic effects of sufentanil and attenuates emergence agitation and systemic proinflammation in patients undergoing tangential excision surgery

    Involvement of adenosine A1 receptor in electroacupuncture-mediated inhibition of astrocyte activation during neuropathic pain

    No full text
    ABSTRACT Neuropathic pain is a chronic pain condition caused by damage or dysfunction of the central or peripheral nervous system. Electroacupuncture (EA) has an antinociceptive effect on neuropathic pain, which is partially due to inhibiting astrocyte activation in the spinal cord. We found that an intrathecal injection of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, reversed the antinociceptive effects of EA in a chronic constriction injury-induced neuropathic pain model. The expression of GFAP in L4-L6 spinal cord was significantly upgraded, while DPCPX suppressed the effect of the EA-mediating inhibition of astrocyte activation, as well as wiping out the EA-induced suppression of cytokine content (TNF-α). These results indicated that the adenosine A1 receptor is involved in EA actions during neuropathic pain through suppressing astrocyte activation as well as TNF-α upregulation of EA, giving enlightenment to the mechanisms of acupuncture analgesia and development of therapeutic targets for neuropathic pain

    Electroacupuncture Attenuates CFA-Induced Inflammatory Pain by Regulating CaMKII

    No full text
    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase that is ubiquitously distributed in the central and peripheral nervous systems. Moreover, its phosphorylated protein (P-CaMKII) is involved in memory, mood, and pain regulation in the anterior cingulate cortex (ACC). Electroacupuncture (EA) is a traditional Chinese therapeutic technique that can effectively treat chronic inflammatory pain. However, the CaMKII-GluA1 role in EA analgesia in the ACC remains unclear. This study investigated the role of P-CaMKII and P-GluA1 in a mouse model of inflammatory pain induced by complete Freund’s adjuvant (CFA). There were increased P-CaMKII and P-GluA1 levels in the ACC. We found that intracerebroventricular injection of KN93, a CaMKII inhibitor, as well as EA stimulation, attenuated complete Freund’s adjuvant-induced pain behavior. Further, EA increased pCaMKII-PICK1 complex (abbreviated as C-P complex) levels. Our findings demonstrate that EA inhibits inflammatory pain by inhibiting CaMKII-GluA1 phosphorylation. P-CaMKII is involved in EA analgesia as the pCaMKII-PICK1 complex

    Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Increasing GSK-3β Phosphorylation Level via Adenosine A1 Receptor

    No full text
    Objective. To observe the effect of adenosine A1 receptor in the hippocampus of mice on GSK-3β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. Method. The model of middle cerebral artery occlusion (MCAO) was established and grouped into electroacupuncture pretreatment group (EA group), MCAO group, and sham-operated group (Sham group). The neurobehavioral manifestation, the volume of cerebral infarction, and its related protein changes in mice in each group were observed. Then, adenosine Α1 receptor antagonist and agonist were injected intraperitoneally to observe the effects of A1 receptor on the phosphorylation level of GSK-3β, neurobehavioral changes, and infarction volume. Results. (1) Compared with the MCAO group (24 hours after reperfusion), the infarct size in the EA group decreased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β are increased. (2) Compared with the EA group, the infarct size in the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) group increased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β are decreased. (3) Compared with the MCAO group, the infarct size in the A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) group decreased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β are increased. There was no significant difference between the EA group and CCPA group. Conclusions. Electroacupuncture pretreatment can increase GSK-3β phosphorylation level via activating A1 receptor, to protect neurons in ischemia-reperfusion injury

    Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy

    No full text
    Real-time, long-term, single-particle tracking (SPT) provides us an opportunity to explore the fate of individual viruses toward understanding the mechanisms underlying virus infection, which in turn could lead to the development of therapeutics against viral diseases. However, the research focusing on the virus assembly and egress by SPT remains a challenge because established labeling strategies could neither specifically label progeny viruses nor make them distinguishable from the parental viruses. Herein, we have established a temporally controllable capsid-specific HaloTag labeling strategy based on reverse genetic technology. VP26, the smallest pseudorabies virus (PrV) capsid protein, was fused with HaloTag protein and labeled with the HaloTag ligand during virus replication. The labeled replication-competent recombinant PrV harvested from medium can be applied directly in SPT experiments without further modification. Thus, virus infectivity, which is critical for the visualization and analysis of viral motion, is retained to the largest extent. Moreover, progeny viruses can be distinguished from parental viruses using diverse HaloTag ligands. Consequently, the entire course of virus infection and replication can be visualized continuously, including virus attachment and capsid entry, transportation of capsids to the nucleus along microtubules, docking of capsids on the nucleus, endonuclear assembly of progeny capsids, and the egress of progeny viruses. In combination with SPT, the established strategy represents a versatile means to reveal the mechanisms and dynamic global picture of the life cycle of a virus

    Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy

    No full text
    Real-time, long-term, single-particle tracking (SPT) provides us an opportunity to explore the fate of individual viruses toward understanding the mechanisms underlying virus infection, which in turn could lead to the development of therapeutics against viral diseases. However, the research focusing on the virus assembly and egress by SPT remains a challenge because established labeling strategies could neither specifically label progeny viruses nor make them distinguishable from the parental viruses. Herein, we have established a temporally controllable capsid-specific HaloTag labeling strategy based on reverse genetic technology. VP26, the smallest pseudorabies virus (PrV) capsid protein, was fused with HaloTag protein and labeled with the HaloTag ligand during virus replication. The labeled replication-competent recombinant PrV harvested from medium can be applied directly in SPT experiments without further modification. Thus, virus infectivity, which is critical for the visualization and analysis of viral motion, is retained to the largest extent. Moreover, progeny viruses can be distinguished from parental viruses using diverse HaloTag ligands. Consequently, the entire course of virus infection and replication can be visualized continuously, including virus attachment and capsid entry, transportation of capsids to the nucleus along microtubules, docking of capsids on the nucleus, endonuclear assembly of progeny capsids, and the egress of progeny viruses. In combination with SPT, the established strategy represents a versatile means to reveal the mechanisms and dynamic global picture of the life cycle of a virus
    corecore